Shielded Metal Arc Welding/Stick (M.M.A.) Welding
In this welding process, an electric arc is created between a coated consumable electrode and the work piece to be welded. This causes the parent materials to be fused together and the electrode to melt. The electrode is of similar material to the parent material, and by melting provides the weld (or joint) with a reinforcing filler material.

The electrode may be coated with basic, rutile or cellulose material, and as the coating burns it protects the arc and weld pool from the atmosphere with a gaseous shroud. The slag which solidifies over the newly deposited weld also protects it from the atmosphere.

Download PDF file on Smaw Process


Gas Tungsten Arc Welding
In this welding process, the electric arc is generated between a non-consumable tungsten electrode and the work piece to be welded. An inert gas atmosphere, usually argon, protects the weld pool. Welding can be achieved by simply fusing the parent materials, or with the addition of a welding rod similar to the parent material.

The rod is allowed to melt in the electric arc and will fill and reinforce the weld joint. Arc ignition is achieved by touching the work piece with the electrode and lifting it by a few millmetres (contact ignition and lift ignition) or by using a high frequency voltage discharge, a gap of about 4 millmetres is maintained from the tungsten electrode and the work piece, high frequency (HF) spark is generated using HF, this makes the air gap conductive, this allows the arc to be established without touching of the work piece and tungsten electrode, therefore no tungsten contamination can occur ( High Frequency ignition).

The following can be used:
-DC (continuous) current is used with most metals(steel/stainless steel).
-AC (alternative) current is ideal for welding aluminium and other materials containing surface refractory oxide.

Download PDF file on TIG Process


Gas Shielded MIG Welding
The MIG/TIG welding process (or GMAW – Gas Metal Arc Welding) uses an electric Arc created between a continuous consumable wire and the work piece to be welded, all protected within a gas atmosphere. This atmosphere can be either inert (Argon) or active (CO2 or a mixture of Argon and CO2).

The wire is continuously fed through a gun to the weld pool by a wire feeder. Either Solid Wire (GMAW) or Cored Wire (FCAW-GS-flux-cored arc welding, gas shielding) can be used.

Self Shielded Flux-Cored Welding
Innershield is an Arc welding process in which welding heat is created from an arc between a continuous flux cored wire and the wire and the work piece. The flux provides gas shielding for the arc and a protective slag covering of the weld deposit.

Submerged Arc Welding
The mechanics of the Submerged Arc Welding process (SAW): Both the electrode and the base metal are melted beneath a layer of flux. This layer protects the weld metal from contamination and concentrates the heat into the joint. The molten flux rises through the pool, deoxidising and cleaning the molten metal. It then forms a protective slag covering and maintains the newly deposited weld.

The range of applications increases from 2mm, with no upper limit. Subarc is one of the most versatile of welding processes. All steel grades, from non to high alloyed, including Ni-based, can be welded with a combination of various application techniques.Ranging from a single electrode-single power source to a combination of four power sources feeding two wires each, Lincoln is proud to offer an extensive range of solutions to the market.

As a global supplier including equipment and consumables, Lincoln’s knowledge in the SAW process will support you in reaching the toughest productivity and quality targets.

Download PDF file on MIG Process
Download PDF file on Submerged Arc Welding Process


The Thermal Arc ArcMaster 300 Series of inverter welding power supplies are fully featured and deliver outstanding arc characteristics thanks to advanced embedded microprocessor technology and digital control.

SmartLogic and Easy Link, multi-voltage technology protects and connects to 208/230/460 VAC, in 1 or 3 phase providing maximum flexibility. Equipped standard is a compliant VRD (voltage reduction device), when activated greatly improves operator safety in the field or workshop. This fully integrated VRD technology all but eliminates the risk of electric shock from the secondary welding circuit.

Download PDF file on Thermal Arc ArcMaster 300 Process
Download PDF file on Popular Steel Applications
Download PDF file on Popular Steel Applications
Download PDF file on Selection Table for Repair Welding
Download PDF file on Selection Table for Tubular Wires
Download PDF file on Structure Diagram Stainless Steel Weld Metal